摘 要
自动化装配技术在现代制造业中发挥着至关重要的作用,然而装配过程中不可避免地存在误差,这些误差会影响产品质量和生产效率。为解决这一问题,本研究聚焦于自动化装配中的误差补偿技术,旨在通过精确的误差识别与补偿算法提高装配精度。研究基于对现有装配误差产生机理的深入分析,结合先进的传感器技术和智能算法,提出了一种融合多源数据的误差预测模型,该模型能够实时获取装配过程中的各项参数并进行动态调整。实验采用工业机器人装配系统作为测试平台,通过大量实际装配任务验证了所提方法的有效性。结果表明,相较于传统方法,新方法可使装配误差降低约30%,显著提高了装配精度和稳定性。此外,本研究还开发了一套误差补偿软件系统,实现了误差补偿过程的自动化与智能化,降低了对人工经验的依赖。这一成果不仅为自动化装配提供了新的解决方案,也为相关领域的误差控制研究提供了有益参考,具有重要的理论意义和应用价值。
关键词:自动化装配 误差补偿技术 多源数据融合
Abstract
Automated assembly technology plays a crucial role in modern manufacturing; however, errors inevitably occur during the assembly process, affecting product quality and production efficiency. To address this issue, this study focuses on error compensation techniques in automated assembly, aiming to enhance assembly accuracy through precise error identification and compensation algorithms. Based on an in-depth analysis of existing mechanisms that generate assembly errors, this research integrates advanced sensor technologies and intelligent algorithms to propose a multi-source data fusion error prediction model. This model can acquire various parameters in real-time during the assembly process and make dynamic adjustments. Experiments were conducted using an industrial robotic assembly system as a test platform, validating the proposed method's effectiveness through extensive practical assembly tasks. Results indicate that compared to traditional methods, the new approach reduces assembly errors by approximately 30%, significantly improving assembly accuracy and stability. Additionally, this study has developed an error compensation software system that automates and intelligently manages the error compensation process, reducing reliance on manual expertise. This achievement not only provides a novel solution for automated assembly but also offers valuable references for error control research in related fields, demonstrating significant theoretical and practical value.
Keyword:Automation Assembly Error Compensation Technology Multi-source Data Fusion
目 录
1绪论 1
1.1自动化装配误差补偿的背景与意义 1
1.2国内外研究现状综述 1
1.3本文研究方法概述 2
2误差源分析与建模 2
2.1装配过程中的主要误差源 2
2.2误差传播模型建立 3
2.3误差累积效应分析 3
3误差补偿技术原理 4
3.1基于传感器的实时补偿 4
3.2预测性误差补偿算法 4
3.3补偿系统的精度评估 5
4应用案例与效果验证 6
4.1实际装配线应用案例 6
4.2补偿效果对比分析 6
4.3技术改进与优化建议 7
结论 7
参考文献 9
致谢 10