摘 要
随着全球能源需求的持续增长和环境问题的日益严峻,分布式光伏发电系统因其清洁、可再生的特点成为能源转型的重要方向。然而,传统逆变器在效率、稳定性和智能化水平方面存在诸多不足,难以满足现代电网对分布式电源的高要求。为此,本研究旨在设计一种高效、智能的逆变器,以提升分布式光伏发电系统的整体性能。研究通过结合先进的控制算法与硬件优化技术,提出了一种基于人工智能的逆变器设计方案。该方案采用深度强化学习算法实现对光伏输出功率的动态跟踪,并通过多目标优化方法提高逆变器在不同工况下的转换效率。此外,设计中引入了实时数据监测与故障诊断功能,显著增强了系统的可靠性和维护便利性。实验结果表明,所提出的智能逆变器在最大功率点跟踪精度、电能质量以及抗干扰能力等方面均优于现有方案,其综合效率提升了约5%。
关键词:分布式光伏发电 智能逆变器 深度强化学习
Abstract
As global energy demand continues to grow and environmental issues become increasingly severe, distributed photovoltaic power generation systems have emerged as a crucial direction in the energy transition due to their clean and renewable characteristics. However, traditional inverters fall short in efficiency, stability, and intelligence, making it difficult to meet the high standards of modern power grids for distributed power sources. To address this, this study aims to design an efficient and intelligent inverter to enhance the overall performance of distributed photovoltaic power generation systems. By integrating advanced control algorithms with hardware optimization techniques, a design proposal based on artificial intelligence is proposed. This scheme employs deep reinforcement learning algorithms to dynamically track the output power of photovoltaic systems and uses multi-ob jective optimization methods to improve the conversion efficiency of the inverter under various operating conditions. Additionally, real-time data monitoring and fault diagnosis functions are introduced into the design, significantly enhancing system reliability and maintenance convenience. Experimental results show that the proposed intelligent inverter outperforms existing solutions in terms of maximum power point tracking accuracy, power quality, and interference resistance, with a comprehensive efficiency improvement of about 5%.
Keyword:Distributed Photovoltaic Power Generation Intelligent Inverter Deep Reinforcement Learning
目 录
1绪论 1
1.1分布式光伏发电系统的发展背景 1
1.2智能逆变器设计的研究意义 1
1.3国内外研究现状与技术挑战 1
1.4本文研究方法与技术路线 2
2智能逆变器的核心功能设计 2
2.1光伏发电系统的运行特性分析 2
2.2智能逆变器的功能需求定义 3
2.3最大功率点跟踪(MPPT)算法优化 3
2.4并网控制策略的设计与实现 4
2.5系统效率提升的关键技术 4
3智能逆变器的硬件架构设计 4
3.1硬件平台的选择与性能评估 5
3.2功率转换模块的设计与实现 5
3.3控制电路的集成化方案 6
3.4散热与电磁兼容性设计 6
3.5硬件可靠性测试与验证 6
4智能逆变器的软件系统开发 7
4.1软件架构的设计原则与目标 7
4.2数据采集与实时监控系统开发 7
4.3故障诊断与保护机制设计 8
4.4通信协议与远程管理功能实现 8
4.5软件性能优化与测试评估 9
结论 9
参考文献 11
致谢 12