部分内容由AI智能生成,人工精细调优排版,文章内容不代表我们的观点。
范文独享 售后即删 个人专属 避免雷同

基于FPGA的计算机系统加速架构设计

基于FPGA的计算机系统加速架构设计

摘    要

  随着计算机应用领域的不断拓展,传统冯·诺依曼架构在处理复杂计算任务时面临性能瓶颈,难以满足实时性和高效性的需求。为此,本文提出一种基于FPGA的计算机系统加速架构设计,旨在通过硬件可重构特性实现对特定应用的有效加速。该架构采用模块化设计理念,将通用处理器与FPGA加速器有机结合,在保持系统灵活性的同时提高运算效率。研究中构建了完整的软硬件协同开发平台,利用高层次综合工具将算法映射到FPGA上,并针对不同应用场景优化资源配置。实验结果表明,所提出的架构在图像处理、信号分析等典型应用中取得了显著加速效果,相较于传统CPU方案平均性能提升3 - 5倍。

关键词:FPGA加速架构  软硬件协同设计  自适应资源分配

Abstract 
  With the continuous expansion of computer application field, the traditional von Neumann architecture faces performance bottlenecks when handling complex computing tasks, which is difficult to meet the needs of real-time and efficiency. To this end, this paper proposes a computer system acceleration architecture design based on FPGA, aiming to achieve effective acceleration for specific applications through hardware reconfigurable features. The architecture adopts the modular design concept, which organically combines the general-purpose processor and the FPGA accelerator, and maintains the flexibility of the system while improving the computing efficiency. In the research, a complete software and hardware collaborative development platform was built, and the algorithm was apped to FPGA using high-level comprehensive tools, and the resource allocation was optimized for different application scenarios. The experimental results show that the proposed architecture has achieved significant acceleration effect in typical applications such as image processing and signal analysis, and improves the average performance by 3-5 times compared with the traditional CPU scheme.

Keyword:Fpga Acceleration Architecture  Hardware-software Co-design  Adaptive Resource Allocation

目  录
1绪论 1
1.1研究背景与意义 1
1.2国内外研究现状 1
1.3本文研究方法 2
2FPGA加速架构需求分析 2
2.1计算机系统性能瓶颈 2
2.3加速架构的功能需求 3
3FPGA加速架构设计原理 4
3.2加速架构设计原则 4
3.3关键技术实现方案 5
4FPGA加速架构实现与优化 5
4.1硬件电路设计实现 5
4.2软硬件协同优化 6
4.3性能测试与评估方法 6
结论 7
参考文献 9
致谢 10


原创文章,限1人购买
此文章已售出,不提供第2人购买!
请挑选其它文章!
×
请选择支付方式
虚拟产品,一经支付,概不退款!