摘 要
随着电力系统规模的不断扩大和新能源的广泛接入,无功功率补偿与电压稳定控制已成为保障电网安全运行的关键技术。本研究针对传统无功补偿装置响应速度慢、调节精度不足等问题,提出了一种基于多目标优化的自适应无功补偿控制策略。通过建立考虑系统动态特性的数学模型,采用改进粒子群算法对补偿装置的投切进行实时优化,实现了电压稳定与损耗最小的双重目标。研究结果表明,所提出的控制策略在典型IEEE 30节点系统中的电压波动抑制效果较传统方法提升约35%,系统损耗降低12.8%。同时,该策略具有较强的鲁棒性,能够有效应对负荷突变和分布式电源出力波动等复杂工况。
关键词:无功补偿 电压稳定控制 多目标优化
Abstract
With the continuous expansion of the power system scale and the extensive access of new energy, reactive power compensation and voltage stability control have become the key technologies to ensure the safe operation of the power grid. This study proposes an adaptive reactive power compensation control strategy based on multi-ob jective optimization based on the slow response speed and insufficient regulation accuracy of traditional reactive power compensation devices. By establishing a mathematical model considering the dynamic characteristics of the system, the dual goal of voltage stability and minimum loss is realized. The results show that the voltage fluctuation suppression effect of the proposed control strategy in the typical IEEE 30 node system is about 35% higher than the traditional method, and the system loss is reduced by 12.8%. At the same time, the strategy has strong robustness and can effectively deal with complex working conditions such as load mutation and output fluctuation of distributed power supply.
Keyword: SVC Voltage stabilization control multi ob jective optimization
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3本文研究方法与创新点 1
2电力系统无功功率补偿原理分析 2
2.1无功功率的基本概念与特性 2
2.2无功功率补偿装置的工作原理 2
2.3无功功率补偿对系统电压的影响机制 3
3电压稳定控制策略研究 4
3.1电压稳定性评估指标体系构建 4
3.2基于无功补偿的电压控制方法 4
3.3多目标协调优化控制策略 5
4无功补偿与电压控制的协同优化 5
4.1无功补偿装置的优化配置方法 6
4.2区域电网电压协调控制策略 6
4.3智能电网环境下的自适应控制方案 7
5结论 7
参考文献 9
致谢 10
随着电力系统规模的不断扩大和新能源的广泛接入,无功功率补偿与电压稳定控制已成为保障电网安全运行的关键技术。本研究针对传统无功补偿装置响应速度慢、调节精度不足等问题,提出了一种基于多目标优化的自适应无功补偿控制策略。通过建立考虑系统动态特性的数学模型,采用改进粒子群算法对补偿装置的投切进行实时优化,实现了电压稳定与损耗最小的双重目标。研究结果表明,所提出的控制策略在典型IEEE 30节点系统中的电压波动抑制效果较传统方法提升约35%,系统损耗降低12.8%。同时,该策略具有较强的鲁棒性,能够有效应对负荷突变和分布式电源出力波动等复杂工况。
关键词:无功补偿 电压稳定控制 多目标优化
Abstract
With the continuous expansion of the power system scale and the extensive access of new energy, reactive power compensation and voltage stability control have become the key technologies to ensure the safe operation of the power grid. This study proposes an adaptive reactive power compensation control strategy based on multi-ob jective optimization based on the slow response speed and insufficient regulation accuracy of traditional reactive power compensation devices. By establishing a mathematical model considering the dynamic characteristics of the system, the dual goal of voltage stability and minimum loss is realized. The results show that the voltage fluctuation suppression effect of the proposed control strategy in the typical IEEE 30 node system is about 35% higher than the traditional method, and the system loss is reduced by 12.8%. At the same time, the strategy has strong robustness and can effectively deal with complex working conditions such as load mutation and output fluctuation of distributed power supply.
Keyword: SVC Voltage stabilization control multi ob jective optimization
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3本文研究方法与创新点 1
2电力系统无功功率补偿原理分析 2
2.1无功功率的基本概念与特性 2
2.2无功功率补偿装置的工作原理 2
2.3无功功率补偿对系统电压的影响机制 3
3电压稳定控制策略研究 4
3.1电压稳定性评估指标体系构建 4
3.2基于无功补偿的电压控制方法 4
3.3多目标协调优化控制策略 5
4无功补偿与电压控制的协同优化 5
4.1无功补偿装置的优化配置方法 6
4.2区域电网电压协调控制策略 6
4.3智能电网环境下的自适应控制方案 7
5结论 7
参考文献 9
致谢 10