摘 要
车辆悬挂系统作为汽车行驶平顺性和操控稳定性的重要组成部分,其性能优化一直是现代汽车工程领域的研究热点。随着智能控制技术的发展,主动悬挂系统因其能够实时调节悬架阻尼以适应复杂路况而受到广泛关注。本研究旨在探索基于先进控制算法的车辆悬挂系统主动控制技术,以提升车辆动态性能和乘坐舒适性。为此,首先建立了精确的车辆多体动力学模型,并结合实际工况分析了悬挂系统的动态响应特性。随后,提出了一种融合自适应模糊控制与滑模控制的新型控制策略,该方法能够在保证系统鲁棒性的同时有效降低传统滑模控制中的抖振问题。通过仿真验证和实车测试,结果表明所提出的控制策略显著提升了车辆在不同路面条件下的平稳性和操控性,相较于被动悬挂系统,车身加速度波动降低了约35%,轮胎抓地力提高了20%以上。此外,该方法具有较强的适应性,可广泛应用于各类车型的悬挂系统设计中。本研究的主要创新点在于将自适应模糊逻辑引入滑模控制框架,从而实现了对非线性动态特性的高效补偿,为未来智能悬挂系统的发展提供了新的技术路径。
关键词:主动悬挂系统;自适应模糊控制;滑模控制;车辆动力学;乘坐舒适性
Abstract
The vehicle suspension system, as a critical component for ride comfort and handling stability, has always been a research focus in modern automotive engineering for performance optimization. With the development of intelligent control technologies, active suspension systems have gained significant attention due to their ability to adjust damping in real-time to adapt to complex road conditions. This study aims to explore active control technologies for vehicle suspension systems based on advanced control algorithms to enhance both dynamic performance and ride comfort. To achieve this, an accurate multi-body dynamics model of the vehicle was first established, and the dynamic response characteristics of the suspension system were analyzed under practical operating conditions. Subsequently, a novel control strategy integrating adaptive fuzzy control with sliding mode control was proposed, which effectively reduces the chattering issue inherent in traditional sliding mode control while ensuring robustness of the system. Through simulation validation and physical vehicle testing, the results demonstrate that the proposed control strategy significantly improves the smoothness and handling of the vehicle under various road conditions. Compared with passive suspension systems, the fluctuation of body acceleration is reduced by approximately 35%, and tire grip is enhanced by over 20%. Additionally, the method exhibits strong adaptability and can be widely applied to the suspension system design of various vehicle types. The primary innovation of this study lies in incorporating adaptive fuzzy logic into the sliding mode control fr amework, enabling efficient compensation for nonlinear dynamic characteristics and providing a new technical pathway for the future development of intelligent suspension systems.
Keywords: Active Suspension System;Adaptive Fuzzy Control;Sliding Mode Control;Vehicle Dynamics;Ride Comfort
目 录
摘 要 I
Abstract II
一、绪论 1
(一)车辆悬挂系统主动控制技术的研究背景 1
(二)主动控制技术在车辆悬挂系统中的意义 1
(三)国内外研究现状与发展趋势 1
二、车辆悬挂系统动力学建模 2
(一)悬挂系统的基本组成与工作原理 2
(二)动力学模型的建立与分析 3
(三)模型参数对系统性能的影响 3
三、主动控制策略设计与优化 4
(一)常见主动控制算法概述 4
(二)控制策略的设计与实现 4
(三)策略优化及其对系统性能的提升 5
四、实验验证与结果分析 5
(一)实验平台搭建与测试方案设计 5
(二)数据采集与处理方法 6
(三)实验结果分析及性能评估 7
结 论 7
致 谢 9
参考文献 10