摘 要
随着电动汽车产业的快速发展,电驱动系统作为其核心部件,其可靠性与安全性成为研究的重点。为提高电驱动系统的故障诊断精度和容错控制能力,本文针对常见故障类型展开深入研究,提出了一种基于数据驱动与模型融合的故障诊断方法,并设计了相应的容错控制策略。通过结合机器学习算法与系统动态特性分析,该方法能够实现对电机、逆变器及传感器等关键部件故障的快速识别与定位。同时,所提出的自适应容错控制策略能够在故障工况下有效维持系统性能,降低动力中断风险。仿真与实验结果表明,所提方法在多种复杂工况下具有较高的诊断准确率和较强的鲁棒性。本研究的创新点在于将数据驱动技术与传统模型分析有机结合,突破了单一方法在复杂故障场景下的局限性,为提升电动汽车电驱动系统的可靠性和安全性提供了理论支持和技术保障。
关键词:电驱动系统;故障诊断;容错控制
Abstract
With the rapid development of the electric vehicle industry, the reliability and safety of the electric drive system, as a core component, have become the focus of research. To improve the fault diagnosis accuracy and fault-tolerant control capability of the electric drive system, this study conducts an in-depth investigation into common fault types and proposes a fault diagnosis method based on the fusion of data-driven approaches and model analysis, along with a corresponding fault-tolerant control strategy. By integrating machine learning algorithms with dynamic characteristic analysis of the system, the proposed method enables rapid identification and localization of faults in key components such as motors, inverters, and sensors. Meanwhile, the adaptive fault-tolerant control strategy developed in this study can effectively maintain system performance under faulty conditions, thereby reducing the risk of power interruption. Simulation and experimental results demonstrate that the proposed method achieves high diagnostic accuracy and strong robustness under various complex operating conditions. The innovation of this research lies in the organic combination of data-driven technology with traditional model-based analysis, which overcomes the limitations of single methods in complex fault scenarios and provides theoretical support and technical assurance for enhancing the reliability and safety of electric drive systems in electric vehicles.
Keywords: Electric Drive System;Fault Diagnosis;Fault-Tolerant Control
目 录
引言 1
一、电驱动系统故障诊断基础 1
(一)故障诊断技术概述 1
(二)关键信号监测方法 1
(三)数据采集与处理策略 2
二、故障特征提取与分析 2
(一)故障模式分类研究 2
(二)特征参数提取方法 3
(三)基于模型的分析框架 3
三、容错控制策略设计 4
(一)控制目标与约束条件 4
(二)容错算法开发与优化 4
(三)实时控制性能评估 5
四、系统验证与应用研究 5
(一)实验平台搭建与测试 5
(二)故障诊断效果验证 5
(三)容错控制实际表现 6
结 论 6
致 谢 8
参考文献 9