摘 要
内燃机尾气排放是当前大气污染的重要来源之一,为满足日益严格的排放法规并提升环境友好性,本研究聚焦于内燃机尾气后处理系统的优化设计与性能分析。通过结合数值模拟与实验验证的方法,系统评估了不同催化剂配方、载体结构及控制策略对尾气净化效率的影响,并提出了一种基于多目标优化算法的后处理系统设计方案。结果表明,优化后的系统在NOx、CO和颗粒物(PM)等污染物的综合减排性能上显著提升,特别是在低温工况下的转化效率提高了25%以上。此外,本研究创新性地引入了实时反馈控制技术,有效降低了系统能耗并增强了运行稳定性。研究表明,优化设计的尾气后处理系统不仅能够满足现行排放标准,还为未来更严格的法规提供了技术储备,具有重要的理论意义和应用价值。
关键词:内燃机尾气后处理;多目标优化算法;催化剂配方
Abstract
Exhaust emissions from internal combustion engines are one of the critical sources of current atmospheric pollution. To meet increasingly stringent emission regulations and enhance environmental compatibility, this study focuses on the optimization design and performance analysis of exhaust after-treatment systems for internal combustion engines. By integrating numerical simulation with experimental validation, the impacts of different catalyst formulations, substrate structures, and control strategies on exhaust purification efficiency were systematically evaluated, and a novel after-treatment system design based on multi-ob jective optimization algorithms was proposed. The results indicate that the optimized system significantly improves the overall reduction performance of pollutants such as NOx, CO, and particulate matter (PM), with the conversion efficiency under low-temperature operating conditions increasing by more than 25%. Additionally, this study innovatively incorporates real-time feedback control technology, effectively reducing system energy consumption while enhancing operational stability. The research demonstrates that the optimized exhaust after-treatment system not only complies with current emission standards but also provides technological reserves for future stricter regulations, highlighting its significant theoretical implications and practical value.
Keywords: Internal Combustion Engine Exhaust After-Treatment;Multi-ob jective Optimization Algorithm;Catalyst Formula
目 录
引言 1
一、内燃机尾气后处理系统概述 1
(一)尾气后处理技术现状 1
(二)系统优化设计的重要性 2
(三)性能分析的关键指标 2
二、优化设计方法与策略 2
(一)设计目标与约束条件 2
(二)关键部件选型与匹配 3
(三)模型建立与仿真分析 3
三、尾气后处理系统性能测试 4
(一)测试平台搭建与校准 4
(二)排放物转化效率评估 4
(三)系统热管理性能分析 5
四、优化设计案例与结果分析 5
(一)实际工况下的应用案例 5
(二)优化前后性能对比分析 5
(三)经济性与环境效益评价 6
结 论 6
致 谢 8
参考文献 9