摘要
随着全球能源结构转型和环境保护需求日益迫切,燃料电池汽车作为清洁能源交通工具的重要发展方向,其动力系统设计与性能优化成为研究热点。本研究旨在构建高效可靠的燃料电池汽车动力系统并对其性能进行全面评估。基于此,提出了一种集成化燃料电池动力系统设计方案,该方案融合了燃料电池堆、储氢系统、辅助电源及控制系统等关键部件,并建立了多目标优化模型以实现系统效率最大化。通过仿真分析与实车测试相结合的方法,对所设计的动力系统进行了深入研究。结果表明,在不同工况下,该系统表现出优异的能量转换效率和动态响应特性,特别是在城市工况下的百公里氢耗较传统方案降低了15%,加速性能提升了20%。此外,创新性地引入了智能能量管理策略,实现了燃料电池与辅助电源的最优协同工作,显著提高了系统的整体能效和可靠性。本研究不仅为燃料电池汽车动力系统的设计提供了理论依据和技术支持,还为推动新能源汽车技术发展做出了积极贡献。
关键词:燃料电池汽车;动力系统设计;多目标优化
Abstract
As the global energy structure transitions and environmental protection demands become increasingly urgent, fuel cell vehicles (FCVs) have emerged as a critical direction for clean energy transportation, making the design and performance optimization of their power systems a research hotspot. This study aims to develop an efficient and reliable power system for FCVs and conduct a comprehensive evaluation of its performance. An integrated fuel cell power system design is proposed, incorporating key components such as the fuel cell stack, hydrogen storage system, auxiliary power source, and control system, while establishing a multi-ob jective optimization model to maximize system efficiency. By combining simulation analysis with real-vehicle testing, the designed power system was thoroughly investigated. The results indicate that under various operating conditions, the system demonstrates superior energy conversion efficiency and dynamic response characteristics, particularly achieving a 15% reduction in hydrogen consumption per 100 kilometers and a 20% improvement in acceleration performance under urban driving conditions compared to traditional solutions. Additionally, an innovative intelligent energy management strategy was introduced, optimizing the collaborative operation between the fuel cell and auxiliary power source, which significantly enhanced the overall energy efficiency and reliability of the system. This research not only provides theoretical foundations and technical support for the design of FCV power systems but also makes a positive contribution to the advancement of new energy vehicle technology.
Keywords:Fuel Cell Vehicle; Power System Design; Multi-ob jective Optimization
目 录
摘要 I
Abstract II
一、绪论 1
(一) 燃料电池汽车动力系统研究背景 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与技术路线 2
二、动力系统架构设计 2
(一) 燃料电池系统选型分析 2
(二) 辅助动力单元匹配方案 3
(三) 系统集成与能量管理策略 4
三、关键部件性能优化 4
(一) 燃料电池堆性能评估 4
(二) 氢气供给系统优化设计 5
(三) 热管理系统效率提升 6
四、整车性能测试与评价 6
(一) 测试平台搭建与标定 6
(二) 动态性能仿真分析 7
(三) 实车道路试验评价 8
结 论 10
参考文献 11
随着全球能源结构转型和环境保护需求日益迫切,燃料电池汽车作为清洁能源交通工具的重要发展方向,其动力系统设计与性能优化成为研究热点。本研究旨在构建高效可靠的燃料电池汽车动力系统并对其性能进行全面评估。基于此,提出了一种集成化燃料电池动力系统设计方案,该方案融合了燃料电池堆、储氢系统、辅助电源及控制系统等关键部件,并建立了多目标优化模型以实现系统效率最大化。通过仿真分析与实车测试相结合的方法,对所设计的动力系统进行了深入研究。结果表明,在不同工况下,该系统表现出优异的能量转换效率和动态响应特性,特别是在城市工况下的百公里氢耗较传统方案降低了15%,加速性能提升了20%。此外,创新性地引入了智能能量管理策略,实现了燃料电池与辅助电源的最优协同工作,显著提高了系统的整体能效和可靠性。本研究不仅为燃料电池汽车动力系统的设计提供了理论依据和技术支持,还为推动新能源汽车技术发展做出了积极贡献。
关键词:燃料电池汽车;动力系统设计;多目标优化
Abstract
As the global energy structure transitions and environmental protection demands become increasingly urgent, fuel cell vehicles (FCVs) have emerged as a critical direction for clean energy transportation, making the design and performance optimization of their power systems a research hotspot. This study aims to develop an efficient and reliable power system for FCVs and conduct a comprehensive evaluation of its performance. An integrated fuel cell power system design is proposed, incorporating key components such as the fuel cell stack, hydrogen storage system, auxiliary power source, and control system, while establishing a multi-ob jective optimization model to maximize system efficiency. By combining simulation analysis with real-vehicle testing, the designed power system was thoroughly investigated. The results indicate that under various operating conditions, the system demonstrates superior energy conversion efficiency and dynamic response characteristics, particularly achieving a 15% reduction in hydrogen consumption per 100 kilometers and a 20% improvement in acceleration performance under urban driving conditions compared to traditional solutions. Additionally, an innovative intelligent energy management strategy was introduced, optimizing the collaborative operation between the fuel cell and auxiliary power source, which significantly enhanced the overall energy efficiency and reliability of the system. This research not only provides theoretical foundations and technical support for the design of FCV power systems but also makes a positive contribution to the advancement of new energy vehicle technology.
Keywords:Fuel Cell Vehicle; Power System Design; Multi-ob jective Optimization
目 录
摘要 I
Abstract II
一、绪论 1
(一) 燃料电池汽车动力系统研究背景 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与技术路线 2
二、动力系统架构设计 2
(一) 燃料电池系统选型分析 2
(二) 辅助动力单元匹配方案 3
(三) 系统集成与能量管理策略 4
三、关键部件性能优化 4
(一) 燃料电池堆性能评估 4
(二) 氢气供给系统优化设计 5
(三) 热管理系统效率提升 6
四、整车性能测试与评价 6
(一) 测试平台搭建与标定 6
(二) 动态性能仿真分析 7
(三) 实车道路试验评价 8
结 论 10
参考文献 11