摘 要
斜坡式重力储能作为一种新兴的储能方式,其利用重力势能进行能量的存储与释放,具有储能密度高、寿命长、环保等优点,对于稳定电网、调节峰谷差具有显著意义。本研究旨在通过系统分析和实验研究,突破斜坡式重力储能电气系统的关键技术难题,推动其在实际应用中的发展。研究采用了理论分析、数值模拟与实验研究相结合的方法。对斜坡式重力储能的基本原理进行了详细阐述,并建立了相应的数学模型。通过数值模拟对储能过程中的动力学特性进行了深入研究,优化了储能系统的结构设计。该系统在实际运行中表现出良好的稳定性和可靠性,为可再生能源的大规模接入提供了有力的技术支持。本研究通过对斜坡式重力储能电气系统的关键技术进行深入研究,不仅提高了系统的能量转换效率,还为其在实际电力系统中的应用提供了理论基础和技术支撑。
关键词:斜坡式重力储能 关键技术 能量转换效率 可再生能源接入
Abstract
As a new energy storage method, slope gravity energy storage uses gravity potential energy for energy storage and release, which has the advantages of high energy storage density, long life and environmental protection, and has significant significance for stabilizing the power grid and regulating the peaking valley difference. Through systematic analysis and experimental research, this study aims to break through the key technical problems of the slope type gravity energy storage electrical system and promote its development in practical applications. The methods of theoretical analysis, numerical simulation and experimental research are used in this study. The basic principle of slope gravity energy storage is described in detail, and the corresponding mathematical model is established. Through numerical simulation, the dynamic characteristics of the energy storage process are deeply studied, and the structural design of the energy storage system is optimized. The system shows good stability and reliability in actual operation, and provides strong technical support for large-scale access of renewable energy. This research not only improves the energy conversion efficiency of the system, but also provides theoretical basis and technical support for its application in the actual power system through in-depth research on the key technologies of the slope type gravity energy storage electrical system.
Keyword:Slope gravity energy storage Key technology Energy conversion efficiency Renewable energy
access
目 录
1绪论 1
1.1研究背景及意义 1
1.2国内外研究现状 1
1.3研究内容及目的 1
2斜坡式重力储能系统概述 1
2.1斜坡式重力储能系统简介 1
2.2斜坡式重力储能系统的工作原理 2
3斜坡式重力储能电气系统设计 2
3.1电气系统整体架构设计 2
3.2能量转换与控制模块设计 3
3.3储能装置的选择与设计 3
3.4安全保护与监控系统设计 3
3.5系统效率与稳定性分析 4
4关键技术分析与研究 4
4.1高效能量转换技术研究 4
4.2储能系统优化与控制策略研究 5
4.3系统集成与智能化管理技术 5
4.4故障诊断与预防维护技术 5
4.5环境适应性与可靠性分析 6
5系统实现与性能测试 6
5.1原型系统搭建与调试 6
5.2性能测试方法与指标体系 6
5.3实验结果分析与讨论 7
5.4系统优化与改进建议 7
5.5实际应用前景与市场推广策略 7
6结论 8
参考文献 9
致谢 10