摘 要
随着可再生能源大规模接入和电力电子设备广泛应用,现代电力系统面临频率与电压稳定性相互耦合的复杂挑战。本研究提出了一种基于多时间尺度的综合控制策略,旨在实现频率与电压稳定性的协同优化。通过建立考虑源-网-荷互动的系统动态模型,揭示了频率与电压失稳的内在机理及交互影响规律。在此基础上,设计了包含快速响应层、协调控制层和全局优化层的分层控制架构,其中快速响应层采用改进的自适应虚拟惯量控制算法提升系统抗扰能力,协调控制层引入模糊预测机制实现多目标动态平衡,全局优化层运用深度强化学习技术进行长期运行优化。仿真结果表明,所提策略在应对大功率缺失、负荷突变等扰动时,能够将频率偏差控制在±0.1Hz以内,电压波动幅度降低40%以上,显著提升了系统的动态稳定性。
关键词:电力系统稳定性 多时间尺度控制 虚拟惯量控制
Abstract
With the large-scale access of renewable energy and the wide application of power electronic equipment, modern power systems face the complex challenges of intercoupling between frequency and voltage stability. This study presents an integrated control strategy based on multiple timescales, aiming to achieve a synergistic optimization of frequency and voltage stability. By establishing a system dynamic model considering source-net-charge interaction, the internal mechanism of frequency and voltage instability and the law of interaction are revealed. On this basis, the design contains fast response layer, coordinate control layer and global optimization layer of hierarchical control architecture, the rapid response layer using improved adaptive virtual inertia control algorithm improve system immunity ability, coordinate control layer introducing fuzzy prediction mechanism to achieve more dynamic balance, global optimization layer using depth reinforcement learning technology for long-term operation optimization. The simulation results show that the proposed strategy can control the frequency deviation within ± 0.1Hz in response to the loss of high power and load mutation, and reduce the voltage fluctuation amplitude by more than 40%, which significantly improves the dynamic stability of the system.
Keyword: Power system stability Multiple time-scale control Virtual inertia control
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3本文研究方法与技术路线 2
2电力系统频率与电压稳定性的耦合机理分析 2
2.1频率与电压稳定性的物理关联性 2
2.2电力系统动态特性对综合控制的影响 3
2.3新能源接入对频率与电压稳定性的挑战 3
3频率与电压稳定性综合控制策略设计 4
3.1基于多目标优化的综合控制框架 4
3.2分布式能源参与的综合控制方法 4
3.3考虑不确定性的鲁棒控制策略 5
4综合控制策略的仿真验证与性能评估 6
4.1IEEE标准测试系统的仿真平台构建 6
4.2不同运行场景下的控制效果分析 6
4.3综合控制策略的鲁棒性与适应性评估 7
5结论 7
参考文献 9
致谢 10
随着可再生能源大规模接入和电力电子设备广泛应用,现代电力系统面临频率与电压稳定性相互耦合的复杂挑战。本研究提出了一种基于多时间尺度的综合控制策略,旨在实现频率与电压稳定性的协同优化。通过建立考虑源-网-荷互动的系统动态模型,揭示了频率与电压失稳的内在机理及交互影响规律。在此基础上,设计了包含快速响应层、协调控制层和全局优化层的分层控制架构,其中快速响应层采用改进的自适应虚拟惯量控制算法提升系统抗扰能力,协调控制层引入模糊预测机制实现多目标动态平衡,全局优化层运用深度强化学习技术进行长期运行优化。仿真结果表明,所提策略在应对大功率缺失、负荷突变等扰动时,能够将频率偏差控制在±0.1Hz以内,电压波动幅度降低40%以上,显著提升了系统的动态稳定性。
关键词:电力系统稳定性 多时间尺度控制 虚拟惯量控制
Abstract
With the large-scale access of renewable energy and the wide application of power electronic equipment, modern power systems face the complex challenges of intercoupling between frequency and voltage stability. This study presents an integrated control strategy based on multiple timescales, aiming to achieve a synergistic optimization of frequency and voltage stability. By establishing a system dynamic model considering source-net-charge interaction, the internal mechanism of frequency and voltage instability and the law of interaction are revealed. On this basis, the design contains fast response layer, coordinate control layer and global optimization layer of hierarchical control architecture, the rapid response layer using improved adaptive virtual inertia control algorithm improve system immunity ability, coordinate control layer introducing fuzzy prediction mechanism to achieve more dynamic balance, global optimization layer using depth reinforcement learning technology for long-term operation optimization. The simulation results show that the proposed strategy can control the frequency deviation within ± 0.1Hz in response to the loss of high power and load mutation, and reduce the voltage fluctuation amplitude by more than 40%, which significantly improves the dynamic stability of the system.
Keyword: Power system stability Multiple time-scale control Virtual inertia control
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3本文研究方法与技术路线 2
2电力系统频率与电压稳定性的耦合机理分析 2
2.1频率与电压稳定性的物理关联性 2
2.2电力系统动态特性对综合控制的影响 3
2.3新能源接入对频率与电压稳定性的挑战 3
3频率与电压稳定性综合控制策略设计 4
3.1基于多目标优化的综合控制框架 4
3.2分布式能源参与的综合控制方法 4
3.3考虑不确定性的鲁棒控制策略 5
4综合控制策略的仿真验证与性能评估 6
4.1IEEE标准测试系统的仿真平台构建 6
4.2不同运行场景下的控制效果分析 6
4.3综合控制策略的鲁棒性与适应性评估 7
5结论 7
参考文献 9
致谢 10