摘 要
智能电网作为现代电力系统的重要发展方向,其稳定运行依赖于高效的数据采集与分析体系。高级量测体系(AMI)作为智能电网的关键组成部分,在实现精细化用电管理、优化资源配置方面发挥着不可替代的作用。本文聚焦于AMI架构设计与优化,旨在构建一个具备高可靠性、可扩展性和安全性的量测体系。通过引入物联网技术、边缘计算和大数据分析方法,提出了一种分层分布式AMI架构模型,该模型不仅实现了数据的实时采集与处理,还有效解决了传统集中式架构存在的瓶颈问题。研究采用仿真模拟与实证分析相结合的方法,对所提架构进行了全面测试与验证。结果表明,新架构在数据传输效率、系统响应速度及安全性等方面均有显著提升。特别是基于边缘计算的本地预处理机制,大幅降低了主站服务器负载,提高了整体系统的鲁棒性。本研究为智能电网AMI建设提供了理论依据和技术支持,对于推动电力系统智能化转型具有重要参考价值。
关键词:智能电网;高级量测体系;边缘计算
Abstract
As an important development direction of modern power system, the stable operation of smart grid depends on the efficient data collection and analysis system. As a key part of smart grid, advanced measurement system (AMI) plays an irreplaceable role in realizing fine power consumption management and optimizing resource allocation. This paper focuses on the design and optimization of AMI architecture, aiming to build a measurement system with high reliability, scalability and security. By introducing the Internet of Things technology, edge computing and big data analysis methods, a hierarchical distributed AMI architecture model is proposed, which not only realizes the real-time data collection and processing, but also effectively solves the bottleneck problem existing in the traditional centralized architecture. The study uses simulation and empirical analysis to test and verify the proposed architecture. The results show that the new architecture has significantly improved in data transmission efficiency, system response speed and security. In particular, the local preprocessing mechanism based on edge computing greatly reduces the load of the host server and improves the robustness of the overall system. This study provides theoretical basis and technical support for the construction of smart grid AMI, and has important reference value for promoting the intelligent transformation of power system.
Keywords: Smart grid; advanced measuring system; edge computing
目 录
1 引言 1
2 高级量测体系架构概述 1
2.1 智能电网需求分析 1
2.2 架构核心组件解析 2
2.3 技术实现路径探讨 2
3 数据采集与传输优化 3
3.1 采集终端设计原则 3
3.2 通信网络性能提升 3
3.3 数据质量保障机制 3
4 系统集成与互操作性 4
4.1 标准化框架构建 4
4.2 多系统融合策略 4
4.3 信息交互协议设计 5
5 安全防护与隐私保护 5
5.1 安全威胁评估模型 5
5.2 防护技术应用研究 6
5.3 用户隐私保护措施 6
6 结论 7
致 谢 8
参考文献 9
智能电网作为现代电力系统的重要发展方向,其稳定运行依赖于高效的数据采集与分析体系。高级量测体系(AMI)作为智能电网的关键组成部分,在实现精细化用电管理、优化资源配置方面发挥着不可替代的作用。本文聚焦于AMI架构设计与优化,旨在构建一个具备高可靠性、可扩展性和安全性的量测体系。通过引入物联网技术、边缘计算和大数据分析方法,提出了一种分层分布式AMI架构模型,该模型不仅实现了数据的实时采集与处理,还有效解决了传统集中式架构存在的瓶颈问题。研究采用仿真模拟与实证分析相结合的方法,对所提架构进行了全面测试与验证。结果表明,新架构在数据传输效率、系统响应速度及安全性等方面均有显著提升。特别是基于边缘计算的本地预处理机制,大幅降低了主站服务器负载,提高了整体系统的鲁棒性。本研究为智能电网AMI建设提供了理论依据和技术支持,对于推动电力系统智能化转型具有重要参考价值。
关键词:智能电网;高级量测体系;边缘计算
Abstract
As an important development direction of modern power system, the stable operation of smart grid depends on the efficient data collection and analysis system. As a key part of smart grid, advanced measurement system (AMI) plays an irreplaceable role in realizing fine power consumption management and optimizing resource allocation. This paper focuses on the design and optimization of AMI architecture, aiming to build a measurement system with high reliability, scalability and security. By introducing the Internet of Things technology, edge computing and big data analysis methods, a hierarchical distributed AMI architecture model is proposed, which not only realizes the real-time data collection and processing, but also effectively solves the bottleneck problem existing in the traditional centralized architecture. The study uses simulation and empirical analysis to test and verify the proposed architecture. The results show that the new architecture has significantly improved in data transmission efficiency, system response speed and security. In particular, the local preprocessing mechanism based on edge computing greatly reduces the load of the host server and improves the robustness of the overall system. This study provides theoretical basis and technical support for the construction of smart grid AMI, and has important reference value for promoting the intelligent transformation of power system.
Keywords: Smart grid; advanced measuring system; edge computing
目 录
1 引言 1
2 高级量测体系架构概述 1
2.1 智能电网需求分析 1
2.2 架构核心组件解析 2
2.3 技术实现路径探讨 2
3 数据采集与传输优化 3
3.1 采集终端设计原则 3
3.2 通信网络性能提升 3
3.3 数据质量保障机制 3
4 系统集成与互操作性 4
4.1 标准化框架构建 4
4.2 多系统融合策略 4
4.3 信息交互协议设计 5
5 安全防护与隐私保护 5
5.1 安全威胁评估模型 5
5.2 防护技术应用研究 6
5.3 用户隐私保护措施 6
6 结论 7
致 谢 8
参考文献 9