部分内容由AI智能生成,人工精细调优排版,文章内容不代表我们的观点。
范文独享 售后即删 个人专属 避免雷同

新型分子筛催化剂的制备及其催化裂化性能

新型分子筛催化剂的制备及其催化裂化性能

摘    要

  随着能源需求的增长和环保要求的日益严格,开发高效、环保的催化裂化催化剂成为石油化工领域的重要研究方向。新型分子筛催化剂因具有独特的孔道结构和酸性位点,在催化裂化反应中展现出优异性能。本研究旨在制备一种新型分子筛催化剂并探究其催化裂化性能。以硅源、铝源、模板剂等为原料,采用水热合成法成功制备了新型分子筛催化剂,通过改变合成条件如温度、时间、原料配比等调控分子筛的晶体结构和酸性强度。利用X射线衍射、扫描电子显微镜、氮气吸附 - 脱附等手段对催化剂进行表征,结果显示该分子筛具有规整的晶体结构、较大的比表面积和适宜的孔径分布。在固定床反应器中评价其催化裂化性能,以重油为原料,考察不同反应条件下的转化率、产品分布等情况。

关键词:分子筛催化剂  催化裂化  重油转化率

Abstract 
  With the growth of energy demand and the increasingly strict environmental protection requirements, the development of efficient and environmentally friendly catalytic cracking catalysts has become an important research direction in the field of petrochemical industry. The new molecular sieve catalyst shows excellent performance in the catalytic cracking reaction because of its unique pore structure and acid site. The purpose of this study was to prepare a new molecular sieve catalyst and explore its catalytic cracking properties. Using silicon source, aluminum source, template agent as raw materials, the new molecular sieve catalyst was successfully prepared by hydrothermal synthesis method, and the crystal structure and acid strength of molecular sieve were regulated by changing the synthesis conditions such as temperature, time and raw material ratio. The catalyst was characterized by means of X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption, and the results showed that the molecular sieve has a regular crystal structure, large specific surface area and suitable pore size distribution. The catalytic cracking performance was evaluated in the fixed bed reactor, and the conversion rate and product distribution were investigated under different reaction conditions.

Keyword:Molecular Sieve Catalyst  Catalytic Cracking  Heavy Oil Conversion Rate

目  录
1绪论 1
1.1新型分子筛催化剂研究背景与意义 1
1.2国内外研究现状综述 1
1.3本文研究方法概述 1
2分子筛催化剂的制备工艺 2
2.1制备原料的选择与预处理 2
2.2合成方法的优化探索 2
2.3制备条件对结构的影响 3
2.4表征技术的应用 3
3催化剂性能评价体系 4
3.1裂化反应实验设计 4
3.2性能测试指标建立 5
3.3影响催化活性的因素 5
3.4稳定性与再生性能 6
4工业应用前景分析 6
4.1实际工况适应性 6
4.2成本效益评估 7
4.3环境影响评价 7
4.4发展趋势展望 8
结论 8
参考文献 10
致谢 11



 

原创文章,限1人购买
此文章已售出,不提供第2人购买!
请挑选其它文章!
×
请选择支付方式
虚拟产品,一经支付,概不退款!