摘 要
精密机械加工工艺及误差分析是现代制造业的重要研究领域,随着高端装备制造对零件精度要求的不断提高,传统加工工艺已难以满足需求。本研究旨在探讨精密机械加工过程中的工艺优化与误差控制方法,通过建立数学模型并结合实际生产数据进行系统分析。基于此,采用有限元仿真技术模拟不同加工参数下的应力应变分布情况,并引入智能算法优化刀具路径规划,提出了一种基于多物理场耦合的误差预测模型,该模型能够准确预测加工过程中产生的热变形和残余应力。通过对典型航空发动机叶片零件进行实验验证,结果表明新方法可将尺寸精度提高30%,表面粗糙度降低25%。此外,本研究还创新性地提出了基于机器学习的在线监测系统,实现了对加工过程的实时监控与反馈调整,有效提高了产品质量稳定性。本研究不仅为精密机械加工提供了理论依据和技术支持,也为相关领域的研究开辟了新的思路,对于推动我国高端制造产业发展具有重要意义。
关键词:精密机械加工 误差预测模型 多物理场耦合
Abstract
Precision machining processes and error analysis are critical research areas in modern manufacturing. As the precision requirements for components in advanced equipment manufacturing continue to increase, traditional machining processes have become inadequate. This study aims to investigate process optimization and error control methods in precision machining by establishing mathematical models and conducting systematic analyses using actual production data. Finite element simulation technology is employed to model stress and strain distributions under different machining parameters, while intelligent algorithms are introduced to optimize tool path planning. A multiphysics coupling-based error prediction model is proposed, which can accurately predict thermal deformation and residual stresses during machining. Experimental validation on a typical aerospace engine blade component demonstrates that the new method improves dimensional accuracy by 30% and reduces surface roughness by 25%. Furthermore, this research innovatively proposes a machine learning-based online monitoring system, enabling real-time monitoring and feedback adjustment of the machining process, thereby significantly enhancing product quality stability. This study not only provides theoretical foundations and technical support for precision machining but also opens up new avenues for research in related fields, playing a crucial role in advancing China's high-end manufacturing industry.
Keyword:Precision Machining Error Prediction Model Multi-Physics Coupling
目 录
1绪论 1
1.1研究背景与意义 1
1.2国内外研究现状 1
1.3研究方法与技术路线 2
2精密机械加工工艺原理 2
2.1加工工艺基础理论 2
2.2典型精密加工方法 3
2.3工艺参数优化策略 3
3误差源分析与分类 4
3.1几何误差产生机理 4
3.2热变形误差影响 4
3.3测量误差评估方法 5
4误差控制与补偿技术 5
4.1在线监测系统构建 6
4.2误差补偿算法设计 6
4.3精度保持措施探讨 7
结论 7
参考文献 9
致谢 10
精密机械加工工艺及误差分析是现代制造业的重要研究领域,随着高端装备制造对零件精度要求的不断提高,传统加工工艺已难以满足需求。本研究旨在探讨精密机械加工过程中的工艺优化与误差控制方法,通过建立数学模型并结合实际生产数据进行系统分析。基于此,采用有限元仿真技术模拟不同加工参数下的应力应变分布情况,并引入智能算法优化刀具路径规划,提出了一种基于多物理场耦合的误差预测模型,该模型能够准确预测加工过程中产生的热变形和残余应力。通过对典型航空发动机叶片零件进行实验验证,结果表明新方法可将尺寸精度提高30%,表面粗糙度降低25%。此外,本研究还创新性地提出了基于机器学习的在线监测系统,实现了对加工过程的实时监控与反馈调整,有效提高了产品质量稳定性。本研究不仅为精密机械加工提供了理论依据和技术支持,也为相关领域的研究开辟了新的思路,对于推动我国高端制造产业发展具有重要意义。
关键词:精密机械加工 误差预测模型 多物理场耦合
Abstract
Precision machining processes and error analysis are critical research areas in modern manufacturing. As the precision requirements for components in advanced equipment manufacturing continue to increase, traditional machining processes have become inadequate. This study aims to investigate process optimization and error control methods in precision machining by establishing mathematical models and conducting systematic analyses using actual production data. Finite element simulation technology is employed to model stress and strain distributions under different machining parameters, while intelligent algorithms are introduced to optimize tool path planning. A multiphysics coupling-based error prediction model is proposed, which can accurately predict thermal deformation and residual stresses during machining. Experimental validation on a typical aerospace engine blade component demonstrates that the new method improves dimensional accuracy by 30% and reduces surface roughness by 25%. Furthermore, this research innovatively proposes a machine learning-based online monitoring system, enabling real-time monitoring and feedback adjustment of the machining process, thereby significantly enhancing product quality stability. This study not only provides theoretical foundations and technical support for precision machining but also opens up new avenues for research in related fields, playing a crucial role in advancing China's high-end manufacturing industry.
Keyword:Precision Machining Error Prediction Model Multi-Physics Coupling
目 录
1绪论 1
1.1研究背景与意义 1
1.2国内外研究现状 1
1.3研究方法与技术路线 2
2精密机械加工工艺原理 2
2.1加工工艺基础理论 2
2.2典型精密加工方法 3
2.3工艺参数优化策略 3
3误差源分析与分类 4
3.1几何误差产生机理 4
3.2热变形误差影响 4
3.3测量误差评估方法 5
4误差控制与补偿技术 5
4.1在线监测系统构建 6
4.2误差补偿算法设计 6
4.3精度保持措施探讨 7
结论 7
参考文献 9
致谢 10